I. Model Problems.
II. Practice Problems (1-6)
III. Practice(harder) & Word Problems (7 - 18)
IV. Challenge Problems
V. Answer Key

Web Resources
www.mathwarehouse.com/law-of-sines

ambiguous case - video Tutorial and practice problems
Law of Sines -video Tutorial and practice problems
Pictures of Law of Sines (problem diagrams and formula)
Law of Sines and Cosines Worksheets

© www.MathWorksheetsGo.com All Rights Reserved
Commercial Use Prohibited

Terms of Use: By downloading this file you are agreeing to the Terms of Use Described at http://www.mathworksheetsgo.com/downloads/terms-of-use.php .

Free Graph Paper : www.mathworksheetsgo.com/paper/
Law of Sines: Ambiguous Case

For any \(\Delta ABC \):

\[
\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}
\]

or

\[
\frac{\sin A}{a} = \frac{\sin B}{b} = \frac{\sin C}{c}
\]

I. Model Problems

In the following example you will find the possible measures of an angle given the sine of the angle.

Example 1:

Find the measure of \(\angle A \) if \(\sin A = \frac{1}{2} \).

Shown in Quadrant I is angle \(A \) with a sine of \(\frac{1}{2} \).

Finding the inverse, \(\angle A = 30^\circ \).

In Quadrant II is another angle \(A \) with a sine of \(\frac{1}{2} \).

\(\angle A = 180^\circ - 30^\circ \)

\(\angle A = 150^\circ \)

Therefore if \(\sin A = \frac{1}{2} \), then \(\angle A = 30^\circ \) or \(150^\circ \).
In the following example you will find all the possible measures of an angle of a triangle using Law of Sines.

Example 2:
For \(\triangle ABC, \ a = 8, b = 10, \ \text{and} \ m \angle A = 34^\circ \). Find all the possible \(m \angle B \) to the nearest whole degree.

Write down known. \(a = 8, b = 10, \ m \angle A = 34^\circ \)

Draw and label a figure. Drawn is one possible triangle (in this case an acute triangle). There may be more than one possible triangle.

Law of Sines \[\frac{\sin B}{b} = \frac{\sin A}{a} \]

Substitute. \[\frac{\sin B}{10} = \frac{\sin 34^\circ}{8} \]

Isolate \(\sin B \). \[\sin B = \left(\frac{\sin 34^\circ}{8}\right)(10) \]

Find the inverse. \[\sin B = \frac{10}{8} \sin 34^\circ \]

Round to the nearest whole degree. \(m \angle B \approx 44^\circ \)

Find \(m \angle B \) in Quadrant II \(m \angle B \approx 180^\circ - 44^\circ \)

Check to see if 136° is a possible angle measurement for the triangle using the sum of the angles of a triangle.

\[m \angle A + m \angle B \approx 180^\circ? \]
\[44^\circ + 136^\circ \approx 180^\circ? \]
\[170^\circ \approx 180^\circ \checkmark \]
II. Practice Problems

1. For $\triangle ABC$,
 $a = 7, b = 15$, and $\angle A = 26^\circ$. Find all possible $\angle B$ to the nearest degree.

2. For $\triangle ABC$,
 $b = 17, c = 24$, and $\angle B = 16^\circ$. Find all possible $\angle C$ to the nearest degree.

3. For $\triangle DEF$,
 $e = 52, f = 41$, and $\angle F = 48^\circ$. Find all possible $\angle E$ to the nearest degree.

4. For $\triangle LMN$,
 $l = 27, m = 15$, and $\angle L = 55^\circ$. Find all possible $\angle M$ to the nearest degree.

5. For $\triangle ABC$,
 $b = 120, c = 92$, and $\angle C = 42^\circ$. How many triangles can be formed?

6. For $\triangle DEF$,
 $d = 6, e = 24$, and $\angle E = 38^\circ$. How many Triangles can be formed?
III. Practice (harder) & word problems

7. For $\triangle ABC$,
 $a = 62, b = 53, \text{ and } m\angle A = 54^\circ$. Find all possible $m\angle A$ to the nearest degree.

8. For $\triangle LMN$,
 $m = 8, n = 11, \text{ and } m\angle M = 6^\circ$. Find all possible $m\angle N$ to the nearest degree.

9. For $\triangle XYZ$, $y = 7, z = 5, \text{ and } m\angle Y = 19^\circ$. Find all possible $m\angle Z$ to the nearest degree.

10. For $\triangle ABC$,
 $a = 40, c = 49, \text{ and } m\angle C = 32^\circ$. Find all possible $m\angle A$ to the nearest degree.

11. For $\triangle DEF$,
 $e = 12, f = 21, \text{ and } m\angle E = 25^\circ$. Find all possible $m\angle F$ to the nearest degree.

12. For $\triangle LMN$,
 $l = 30, m = 24, \text{ and } m\angle M = 40^\circ$. Find all possible $m\angle L$ to the nearest degree.

13. A triangle has two sides with lengths of 20 and 15. The measure of the angle opposite the side with a length of 15 is 35°. Find all the possible measures of the angle opposite the side with a length of 20 to the nearest degree.

14. A triangle has two sides with lengths of 45 and 44. The measure of the angle opposite the side with a length of 44 is 62°. Find all the possible measures of the angle opposite the side with a length of 45 to the nearest degree.

15. A triangle has two sides with lengths of 63 and 75. The measure of the angle opposite the side with a length of 75 is 22°. Find all the possible measures of the angle opposite the side with a length of 63 to the nearest degree.

16. A triangle has two sides with lengths of 42 and 37. The measure of the angle opposite the latter is 20°. Find all the possible measures of the angle opposite the side with a length of 42 to the nearest degree.

17. A triangle has two sides with lengths of 15 and 9. The measure of the angle opposite the latter is 34°. How many triangles can be formed?

18. A triangle has two sides with lengths of 17 and 19. The measure of the angle opposite the latter is 5°. How many triangles can be formed?
IV. Challenge Problems

19. For the figure below find $m\angle ADB$ and $m\angle C$ to the nearest whole degree, given $m\angle ADB > m\angle C$.

20. For the figure below find $m\angle DGE$ and $m\angle F$ to the nearest whole degree, given $m\angle DGE > m\angle F$.

![Diagram](image)

21. Line segment AB has a length of 15 and $m\angle A = 35^\circ$. A segment with a length of 12 will form the third side of the triangle. What are the possible measures of the angle opposite side AB?

22. For $\triangle ABC$, $a = 6$, $b = 10$, and $m\angle A = 42^\circ$, how many triangles can be formed?

23. For $\triangle DEF$, $e = 27$, $f = 12$, and $m\angle F = 37^\circ$. Find all possible $m\angle E$ to the nearest degree.

24. For $\triangle ABC$, $a = 15$, $b = 11$, and $m\angle B = 36^\circ$. Find all possible $m\angle C$ to the nearest degree.

25. For $\triangle DEF$, $d = 25$, $e = 30$, and $m\angle D = 40^\circ$. Find all possible measurements of f to the nearest whole number.
V. Answer Key

1. \(\angle B \approx 70^\circ \) or \(110^\circ \)
2. \(\angle C \approx 22^\circ \) or \(158^\circ \)
3. \(\angle E \approx 70^\circ \) or \(110^\circ \)
4. \(\angle M \approx 27^\circ \)
5. Two triangles (\(\angle B \approx 61^\circ \) or \(119^\circ \))
6. One Triangle (\(\angle D \approx 9^\circ \))
7. \(\angle A \approx 71^\circ \) or \(109^\circ \)
8. \(\angle N \approx 8^\circ \) or \(172^\circ \)
9. \(\angle Z \approx 13^\circ \)
10. \(\angle A \approx 26^\circ \)
11. \(\angle F \approx 48^\circ \) or \(132^\circ \)
12. \(\angle L \approx 53^\circ \) or \(127^\circ \)
13. \(\approx 50^\circ \) or \(130^\circ \)
14. \(\approx 65^\circ \) or \(115^\circ \)
15. \(\approx 18^\circ \)
16. \(\approx 23^\circ \) or \(157^\circ \)
17. Two triangles (\(\approx 69^\circ \) or \(111^\circ \))
18. One Triangle (\(\approx 4^\circ \))
19. \(\angle ADB \approx 122^\circ \), \(\angle C \approx 58^\circ \)
20. \(\angle DGE \approx 107^\circ \), \(\angle F \approx 73^\circ \)
21. \(\approx 134^\circ \)
22. none, \(b \) is too short (if \(a \) is less than \(b \sin A \) no triangle is formed- \(a \) is too short)
23. there is no possible \(\angle E \) that will form a triangle with the given dimensions
24. \(\angle C \approx 17^\circ \) or \(91^\circ \)
25. \(f \approx 7 \) or \(39 \)