Volume and Surface Area Practice

List the Surface Area and Volume formulas used for each shape listed.

1. Prism and Cylinder
 \[SA = \quad V = \]

2. Pyramid and Cone
 \[SA = \quad V = \]

3. Sphere
 \[SA = \quad V = \]

Find the Surface Area for the figures in the left column and Volume for the figures in the right column.

Clearly show all formulas, values and your final answer.

4.
 \[
 \begin{array}{c}
 \text{9.1} \\
 \text{8.3} \\
 \text{6.2}
 \end{array}
 \]

5. Regular hexagonal prism
 \[\text{5 cm} \]

6.
 \[
 \begin{array}{c}
 \text{50 cm} \\
 \text{14 cm}
 \end{array}
 \]

7.
 \[
 \begin{array}{c}
 \text{16 ft} \\
 \text{35 ft} \\
 \text{40 ft}
 \end{array}
 \]

8.
 \[
 \begin{array}{c}
 \text{18 in.}
 \end{array}
 \]

9.
 \[
 \begin{array}{c}
 \text{14 in.} \\
 \text{3 in.}
 \end{array}
 \]

10. A sphere is inscribed inside a cube. The volume of the sphere is \(288\pi \text{ cm}^3\).
 a) What is the side length of the cube?
 b) What is the surface area of the cube?
11. A regular pyramid is inscribed in a square prism as shown. Find the surface area of each solid.

![Pyramid in Cube Diagram]

12. What is the volume of the cylinder when the cone is removed?

![Cylinder and Cone Diagram]

Mixed Answers: $460\sqrt{3}$, 896π, 126π, 170, 90, 277.686, 5553.3,
1296π, 864, 12, 1296π (again)
Volume and Surface Area Practice

List the Surface Area and Volume formulas used for each shape listed.

1. Prism and Cylinder
 \[SA = 2B + ph \]
 \[V = Bh \]

2. Pyramid and Cone
 \[SA = \frac{1}{2}pl + B \]
 \[V = \frac{1}{3}Bh \]

3. Sphere
 \[SA = 4\pi r^2 \]
 \[V = \frac{4}{3}\pi r^3 \]

Find the Surface Area for the figures in the left column and Volume for the figures in the right column.

Clearly show all formulas, values and your final answer.

4. \[B = 2.3 \]
 \[p = 7 \]
 \[h = 9.1 \]
 \[SA = 2B + ph \]
 \[= 2(2.3) + 24.86 \cdot 9.1 \]
 \[= 51.46 + 226.226 \]
 \[= 277.686 \]

5. \[A = \frac{1}{2} \cdot AB \cdot CD \]
 \[= \frac{1}{2} \cdot 6 \cdot 10 \]
 \[= 30 \]
 \[B = 14.7 \]
 \[SA = B + \frac{1}{2}pl \]
 \[= 14.7 + \frac{1}{2} \cdot 28 \cdot 50 \]
 \[= 196\pi + 700\pi \]
 \[= 896\pi \]

6. \[B = 50 \]
 \[14 \]
 \[SA = B + \frac{1}{2}pl \]
 \[= 50 \cdot 1 + \frac{1}{2} \cdot 14 \cdot 30 \]
 \[= 196\pi + 700\pi \]
 \[= 896\pi \]

7. \[B = 35 \]
 \[40 \]
 \[35 \]
 \[V = Bh + \frac{1}{2}Bh \]
 \[= 35 \cdot 40 + \frac{1}{2} \cdot 35 \cdot 16 \]
 \[= 4900 + 563.33 \]
 \[= 5553.33 \]

8. \[B = 18 \]
 \[SA = 4\pi r^2 \]
 \[\frac{4}{r} \]
 \[SA = 12\pi \]

9. \[B = 14 \]
 \[3 \]
 \[V = Bh \]
 \[\frac{1}{2} \]
 \[V = 12\pi \]

10. A sphere is inscribed inside a cube. The volume of the sphere is \(288\pi\) cm\(^3\).
 a) What is the side length of the cube? 12

 b) What is the surface area of the cube?

 \[r = 6 \]
 \[\pi = \frac{4}{3} \cdot 288\pi \]
 \[= \frac{4}{3} \cdot 288 \cdot 3 \]
 \[= 864 \]
 \[SA = 864 \]
11. A regular pyramid is inscribed in a square prism as shown. Find the surface area of each solid.

\[SA = 2B + \text{ph} \]
\[= 2(x^2) + 20 \cdot 10 \]
\[= 300 \]

\[SA_{\text{pyr}} = B + \frac{1}{2}pl \]
\[= 25 + \frac{1}{2} \cdot 20 \cdot 13 \]
\[= 25 + 65 \]
\[= 90 \]

12. What is the volume of the cylinder when the cone is removed?

\[V = \text{Cyl} - \text{Cone} \]
\[= Bh - \frac{1}{3}Bh \]
\[= \pi \cdot 24 - \frac{1}{3} \cdot \pi \cdot 24 \]
\[= 194.4 \pi - 64.8 \pi \]
\[V = 129.6 \pi \]

Mixed Answers: \(960 \sqrt{3}, 846 \pi, 126 \pi, 176, 96, 277.686, 555.3 \sqrt{3} \)
\(1296 \pi, 829, 12, 1296 \pi \) (again)